
U.P.B. Sci. Bull., Series C, Vol. 73, Iss. 4, 2011 ISSN 1454-234x

SOFTWARE RELIABILITY PREDICTION MODEL
USING RAYLEIGH FUNCTION

Ana Maria VLADU1

Predicţia fiabilităţii produselor software poate determina fiabilitatea
prezentă a unui produs, folosind tehnici statistice bazate pe datele de eşec, obţinute
în timpul testării sau a folosirii sistemului. Scopul acestei lucrări este să studieze
evoluţia unui produs real de-a lungul a trei variante, folosind funcţia Rayleigh
pentru a prezice numărul de defecte. Articolul oferă două posibilităţi pentru calculul
parametrilor modelului, iar apoi vom putea decide care model este mai bun şi cum
poate fi îmbunătăţit. Rezultatele acestui studiu vor fi folosite pentru a stabili cea mai
bună abordare. Modelul propus a fost folosit în diferite variante ale aceluiaşi
produs, având complexităţi diferite şi întinzându-se pe perioade diferite de timp.

The prediction of software reliability can determine the current reliability of
a product, using statistical techniques based on the failures data, obtained during
testing or system usability. The purpose of this paper is to study the evolution of a
real-life product over three releases, using the Rayleigh function in order to predict
the number of defects. Our paper offers two possibilities for computing the model
parameters, and then we should be able to decide which is better and what can be
improved. Results from this study will be used to determine which approach is best
to be used. The model proposed was used on different releases of the same product,
having various complexities in features and expanding over different periods of
time.

Keywords: Software reliability, testing, reliability models, defect prediction,
defect estimation

1. Introduction

The prediction of software reliability is important to the project
management and release management in order to support decision making for the
product releases. This method helps understand the current quality of the product,
whether or not it can still be tested, and can be used as input for planning the next
release. Pham [1] has created an early prediction model, based on lifecycle phases,
which divides the development cycle in different phases. This model assumes that
the found defects in different phases follow the Rayleigh function, normalized by
the number of code lines. It follows the defect statistics over early development
stage, in order to predict the defect density in later stages.

1 PhD. Student, Eng., Dept. of Automatic Control, University POLITEHNICA of Bucharest,

Romania, e-mail: ana_vladu@yahoo.com

56 Ana Maria Vladu

In this paper we propose to present the comparison of a product having
three releases based on real life values, with a simulated defect prediction model
suggested by us. For this prediction model, the Rayleigh function has been used.

2. Related Work

One of the purposes of reliability models is to make the prediction of
reliability in the early stages of product development. Having a defect prediction
model for testing is useful in determining the number of defects that are likely to
occur during execution, and thus contributing to no known defects of a software
product when it is released. Predicting the total number of defects before testing
begins impacts the quality of the product being delivered.

Schneidewind [2] suggests two approaches to defect prediction: time-
based and metric-based. A time-based prediction model estimates the number of
defects from the number of defects already found in different previous stages of
the life cycle. A metric-based approach uses metrics from historical data, applied
to a prediction model.

The defects found during the test execution phase are the defects that are
prevented from reaching the client, thus increasing the product quality. Although
the test engineers cannot give the number of defects that will be found, defect
prediction models based on previous release data and experience, can be used. An
estimated number of defects can help minimize the number of defects that appear
after release, and can even give a good image of the software product quality, in
the long run.

The number of releases used is kept at a minimum and usually only one or
two recent releases can be used for predicting. According to this model, there can
be major changes in the development process along the releases and these can
affect the relations between the defects. The lack of data is compensated using as
many products as possible, but products that have been developed in an
organization at the same time.

3. Theoretical Review

Software reliability has been defined as the probability of a software
product to insure operating without failure in a specified environment, for a given
amount of time. Based on this definition, software reliability prediction has been
defined as a forecast of how reliable a software product will be in the future,
based on data available so far. Software reliability tends to improve over testing
and operating time, due to errors being removed. This is the reason for the models
being named reliability growth models. Our goal is to analyze the early prediction
model based on development phases.

For software products, continuous availability is necessary, and reliability
is an important component of this. Even so, there can be defects in software
products that cause system failure. In order to avoid these situations and to

Software reliability prediction model using Rayleigh function 57

decrease support expenses, companies want to deliver to clients reliable software.
Developing reliable software is one of the hardest problems of the IT industry.
Pressure brought by schedule, resource limitations and unrealistic demands can
negatively impact the reliability. A difficult issue is knowing the reliability of a
delivered product. After reaching the clients, the reliability is indicated by the
feedback coming from them, under the form of reports, complaints, or
compliments. But, by this time, it is too late to change anything: that is why
companies selling software want to know ahead of time the product reliability.
Reliability models try to do this.

The most important cause of defects in software is bugs, which mean
incorrect implementations. Even the most talented programmers produce software
with defects. The software products complexity is too big, at this moment, to be
handled by people. With all the progress in programming techniques, such as
splitting the programs in small modules, using evolved programming languages
and complex developing tools, results are still far away from perfection, and the
programming productivity has not increased significantly in the past two decades.

The most unpredictable defects in software manifest only after a specific
combination of values for input data or certain external events that were not
predicted by the programmer. Such combinations appear with low probability
during normal testing procedures, so they often make it to the operating phase.
Also, new versions are built on older versions, fixing defects found and adding
new functionality. Even so, the process of fixing defects often introduces new
defects, because the effects of a fix have unpredictable consequences.

Defect prediction deals with estimating the number of defects. Although
other terms have been used to describe it, such as estimation, fault estimation, we
should clarify the difference between the two notions. Defect estimation has been
defined by Nayak [3] as a process of identifying different types of defects of a
software product, aiming to reach high quality. However, defect prediction helps
in estimating the quality of a product before it is released.

Pham [1] has created a prediction model based on lifecycle phases, which
divide the development cycle in different phases, such as: requirements review,
design, implementation, unit testing, integration, system testing, functional testing
etc. This model assumes that the found defects in different phases follow the
Rayleigh function. It follows the defect statistics over early development stage, in
order to predict the defect density in later stages.

The Rayleigh model is the best suited model for estimating the number of
defects logged throughout the testing process, depending on the stage when it was
found (unit testing, integration testing, system testing, functional testing etc.).
Defect prediction function is the following:

),,()(ttKftF m= (1)

Parameter K is the cumulated defect density, t is the actual time unit and tm

is the time at the peak of the curve.

58 Ana Maria Vladu

Before representing the Rayleigh curve, the two parameters K and tm are
estimated. At least three points are necessary for estimating this curve. Once these
have been calculated, the graph can be represented for the entire time interval.

The Rayleigh function is given by the following formula:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 2

22
121)(

t
Peakte

Peak
Ktf (2)

, where K represents total number of injected defects, Peak is a function of
the time tmax where the curve reaches its peak and t is the time value at a specific
moment. Parameter Peak is given by:

.maxtPeak = (3)

The Rayleigh function given by (2) represents the defect arrival rate that is

the number of defects to arrive at a specific time t.
The Dalal and Ho model [4] is also known as the development life cycle

predictive model. This model is based on a couple of assumption, such as:
1. The defect rates from different products at the same life cycle phase are

samples of a statistical universe from the same organization.
2. Different releases of the same product are samples of a statistical

universe of product releases.
The first assumption reflects the fact that products developed inside the

same organization are more or less homogenous. This model is based on the
presumption that products from the same organization behave generally the same,
and that releases of the same product behave similar defect rates. Defect density
for a given product is related to variables, such as number of lines of code and
number of errors in previous life cycles.

4. Method Description

Based on the Rayleigh function and the values of the early stages of
testing, we can predict the evolution of the defects number for the second release
of the product, following on to compare to the real-life obtained values.

The application we used for this case study is an application on its second
version, which means that the testing began from a stabile version of the product.
We analyzed the evolution of the defect count across three consecutive releases,
being tested over a period of 11, 28 and respectively 15 weeks. The application
studied is an automation tool, developed in C#.

The early prediction model proposed by Gaffney and Davis assumes that
the faults detected over the life of the project will take the form of the Rayleigh
curve (Fig. 1). The algorithm for prediction of defects must begin with obtaining
the start date and the estimated duration of the project in months. Also, since this

Software reliability prediction model using Rayleigh function 59

is a phase-based model, it is important to know the estimated durations for all the
phases, which can present itself as an issue at the beginning of the project.

The data collected from the organization showed that the software process
is a dynamic process, due to production cycles, client issues and support, resource
management (hardware available, testers’ rearrangements). Starting from this
observation and taking into consideration the evolution of the defect count over
the release, we decided to use a model that collects defect data weekly. This
model can follow more closely the evolution of the defect rate, doesn’t need time
scheduling ahead of time, as the phase-based model does, and more easy to
represent knowing the entire duration of the testing process.

Fig. 1. Example of a Rayleigh curve

We followed the steps suggested by Dhiauddin [5] for collecting the data
and using it for prediction model are described as following:

1. Gather defect data from past releases, using especially the total number
of defects found.

2. Use Linear Regression to estimate the total number of defects that may
appear after release.

3. Compute the number of latent defects.
4. Calculate estimated defect rate using the Rayleigh function, for each

week.
5. Calculate the estimated defect rate by phase, based on the project

schedule.
6. Plot the Rayleigh function for the defect prediction pattern.
7. Compare Rayleigh curve and actual data.
A Rayleigh model uses six phases to predict the defect rate, in

chronological order: high level design, low level design, coding, unit testing,
integration testing, and system testing, according to Qian [6].

60 Ana Maria Vladu

The algorithm used by us was the following: first, given the data points,
we plotted them and determined tmax, the time at which the Rayleigh function is at
a maximum. According to Laird [7], by the time tmax, almost 40% of the defects
have been found which can help us calculate the total number of predicted defects.
Mathematically, we can determine the curve to predict the defect rate as long as
we hit the maximum value.

The simulation method used for representing the proposed software
reliability prediction model is created using MATLAB®. Starting from the known
value of the parameter K, the time t, we could simulate and plot the function (2)
over the period of time of the lifecycle. On the same plot, we have represented the
real numerical values, which were introduced as arrays. For the second approach,
in which an estimation of the K parameter was attempted, the method also uses
MATLAB® program, as following: assuming the peak time and the peak value are
two known numerical values, the parameter K could be computer, also using
equation (2). The two approaches to the model, together with real data are plotted
together.

5. Results

For the first release, at maximum time, the total number of defects is 149
(Fig. 2), which gives us the predicted number of defects for the entire release
372.5. Knowing K = 372.5 and the time to hit the maximum, we can determine
f(t). We know that the time when the function reaches the maximum is at week 3,
which is part of the first phase of the product lifecycle. Instead of using the
classical phase model, we used tmax as the number of the week to reach the peak.

Substituting the numerical values, we can determine that for the first
release:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∗=

⎟
⎠
⎞

⎜
⎝
⎛− 2

18
12

3
15.372)(

t
tetf (4)

Another approach we followed was to try a better estimation of the K

parameter, for this using the first set of available data. Having (2) and the number
of defects obtained at the time when the peak is reached, we can calculate the
value for K. For the same release – release 1 – the number of defects at t=3 is 69.
Therefore, the value of the parameter is 341.285~K .

Software reliability prediction model using Rayleigh function 61

Fig. 2. Comparison of the predicted reliability models proposed and the real defect curve for the
first release

Fig. 3. Comparison of the predicted reliability models proposed and the real defect curve for the
second release

For the first release, the comparison between the prediction and the real
life case is show in Fig. 2. As we can notice from the plot, estimating the value of
K based on the defect rate from tm and using the time estimated in weeks, gives a

62 Ana Maria Vladu

Rayleigh curve that is close to the real defect rate curve. Since the peak value was
the starting point, the curves reach the value at the same time, but continue closely
together after this point. While in the first two weeks, there is a slight difference
between the real curve and the predicted one, after reaching the maximum value at
a close point, the predicted curve follows closely the real data. This behavior
could be due to the fact that the first weeks of the process life, the process and
product timelines were not definite and the testing team was not at a full percent
functionality.

The same algorithm was used on the following two releases. Fig. 3 shows
the curve predicted using the weekly defect rate model, the curve predicted by
computing parameter K and the curve given by the real number of defects logged
for the second release of the same application. Having the total number of defect
at the peak time, this gives us K = 1385, and the Rayleigh function:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∗=

⎟
⎠
⎞

⎜
⎝
⎛− 2

200
12

10
11385)(

t
tetf (5)

Using the number of defects at the peak time, we computed the parameter
K, and obtained 1417.9~K . As noticed from Fig. 3, the Rayleigh prediction model
fits the real data curve well for the entire duration of the project. The major fall in
defect detection, close to the 21st week of testing, is the only difference noticeable
in the comparison. This is due to process decisions, such as dropping a feature that
raise issues, supplementing the number of developers assigned to difficult
modules or features.

For the third release, we followed the same logic in plotting the predicted
defect arrival rate and the model curve using estimated K against the real defect
arrival rate. We calculated K = 225 and so we have:

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛∗=

⎟
⎠
⎞

⎜
⎝
⎛− 2

32
12

4
1225)(

t
tetf (6)

Also starting from the number of defects found at the peak moment of
time, the parameter K was computed (593.539~K) and the curve was represented
in Fig. 4. We noticed that the three curves are fitted closely together, especially
after the peak value is reached. There are small differences between the two ways
to calculate the parameter K using the time to reach the Peak expressed in week
number. As we can notice from the figure, the second release expanded over a
long period of time, with feature being added over time, some features removed in
time, and software versions being dropped for testing, which had an impact on the
defect rate. This is best seen in the real behavior as the high variations between
the number of defects found from week to week.

Software reliability prediction model using Rayleigh function 63

Fig. 4. Comparison of the predicted reliability models proposed and the real defect curve for the
third release

Over the duration of a project the high points will tend to compensate for
the low ones, so the behavior predicted by the Rayleigh model is a good
approximation. Instead of using the classical approach of the phase-based
Rayleigh model, we calculated all the variables of the model considering the
number of the weeks for the entire release.

6. Conclusions

The most commonly used and useful defect prediction model is the model
given by the Rayleigh function. The number of defects obtained per phase can
vary from release to release, depending on the number of features implemented,
their complexity, as well as other variables part of the product life cycle. Many of
these variables can be hard to predict at the beginning of the testing process.

This paper uses the existing phase-based model as a starting point in
developing a new approach to predicting the defect rate of a software product. We
have considered changing this model to better suit the testing process, and thus the
defect rate was calculated weekly. The most important aspect of the model was to
have a very good estimation of the total number of defects, represented in the
function by the K parameter, and for this reason, we have developed two
approaches used in computing it. The first approach starts from the observation
that by tmax almost 40% of the defects have been reported, while the second
approach uses the Rayleigh function at the tmax moment of time. Further on, the

64 Ana Maria Vladu

model in the two different cases was validated using data sets of the software
product, provided by a company that develops software applications.

This comparison shows the real data often has some variation when
compared to the original theoretical Rayleigh model. In some phases the data
points will be higher or lower than the model would predict. It can also occur that
real data will not follow an exact curve shape. This behavior has improved
significantly using a model based on time evolution of a project, which doesn’t
take into consideration the phases of the process.

One aspect to notice is the importance of a correct time when the
maximum rate is reached, in both cases we studied. Another suggested approach
to compute K is to have its value estimated for the first three phases.
Consequently, as perspectives, we are considering finding better algorithms to
calculate the parameters of the Rayleigh function, in order to improve the
prediction of defect rate, as well as eliminate as much as possible the empirical
aspects of the reliability prediction models. Another aspect to follow in research is
to find the causes for the differences between prediction and reality, and find an
algorithm to obtain a better estimation.

Our approach was to determine the number of defects reported weekly and
estimate the total number of defects starting from this point. It is easier and more
useful to predict the evolution of the defect rate starting from the previous weeks
of defect reporting, as it follows the Rayleigh curve better. It can also help with
the project scheduling, giving a better estimation of the number of weeks involved
in testing.

R E F E R E N C E S

[1] H. Pham, Handbook of Reliability Engineering, Springer, XXXI, 663 p., ISBN: 978-1-85233-
453-6, 2003, pp 201-210

[2] N.F. Schneidewind, “Body of Knowledge for Software Quality Measurement”, IEEE
Computer, vol. 25, 1999, pp. 675 - 689

[3] V. Nayak and D. Naidya, Defect Estimation Strategies, Patni Computer Systems Limited,
Mumbai, 2003

[4] D. Kumar, J. Crocker, T. Chitra, and H. Saranga, Reliability and Six Sigma, Chapter 8 –
Software Reliability, Springer, XX, 386 p., ISBN: 978-0-387-30255-3, 2006

[5] M. Dhiauddin, Defect Prediction Model for Testing Phase, Universiti Teknologi Malaysia,
May 2009, pp. 16 – 25

[6] L. Qian, Q. Yao, T.M. Khoshgoftaar, Dynamic Two-phase Truncated Rayleigh Model for
Release Date Prediction of Software, J. Software Engineering & Applications, 2010, pp.
603-609

[7] L. Laird, In Praise of Defects, Stevens Institute of Technology,
http://www.njspin.org/present/Linda%20Laird%20March%202005.pdf, 2006

[8] K. Naik, P. Tripathy, Software Testing and Quality Assurance. Theory and Practice, John
Wiley and Sons, Inc., Hoboken, New Jersey, 661 p., ISBN: 978-0-471-78911-6, 2008, pp
471-479.

