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SOFTWARE RELIABILITY PREDICTION MODEL 
USING RAYLEIGH FUNCTION 

Ana Maria VLADU1 

Predicţia fiabilităţii produselor software poate determina fiabilitatea 
prezentă a unui produs, folosind tehnici statistice bazate pe datele de eşec, obţinute 
în timpul testării sau a folosirii sistemului. Scopul acestei lucrări este să studieze 
evoluţia unui produs real de-a lungul a trei variante, folosind funcţia Rayleigh 
pentru a prezice numărul de defecte. Articolul oferă două posibilităţi pentru calculul 
parametrilor modelului, iar apoi vom putea decide care model este mai bun şi cum 
poate fi îmbunătăţit. Rezultatele acestui studiu vor fi folosite pentru a stabili cea mai 
bună abordare. Modelul propus a fost folosit în diferite variante ale aceluiaşi 
produs, având complexităţi diferite şi întinzându-se pe perioade diferite de timp. 

The prediction of software reliability can determine the current reliability of 
a product, using statistical techniques based on the failures data, obtained during 
testing or system usability. The purpose of this paper is to study the evolution of a 
real-life product over three releases, using the Rayleigh function in order to predict 
the number of defects. Our paper offers two possibilities for computing the model 
parameters, and then we should be able to decide which is better and what can be 
improved.  Results from this study will be used to determine which approach is best 
to be used. The model proposed was used on different releases of the same product, 
having various complexities in features and expanding over different periods of 
time. 
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1. Introduction 

The prediction of software reliability is important to the project 
management and release management in order to support decision making for the 
product releases. This method helps understand the current quality of the product, 
whether or not it can still be tested, and can be used as input for planning the next 
release. Pham [1] has created an early prediction model, based on lifecycle phases, 
which divides the development cycle in different phases. This model assumes that 
the found defects in different phases follow the Rayleigh function, normalized by 
the number of code lines. It follows the defect statistics over early development 
stage, in order to predict the defect density in later stages. 
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In this paper we propose to present the comparison of a product having 
three releases based on real life values, with a simulated defect prediction model 
suggested by us. For this prediction model, the Rayleigh function has been used. 

2. Related Work 

One of the purposes of reliability models is to make the prediction of 
reliability in the early stages of product development. Having a defect prediction 
model for testing is useful in determining the number of defects that are likely to 
occur during execution, and thus contributing to no known defects of a software 
product when it is released. Predicting the total number of defects before testing 
begins impacts the quality of the product being delivered.  

Schneidewind [2] suggests two approaches to defect prediction: time-
based and metric-based. A time-based prediction model estimates the number of 
defects from the number of defects already found in different previous stages of 
the life cycle. A metric-based approach uses metrics from historical data, applied 
to a prediction model. 

The defects found during the test execution phase are the defects that are 
prevented from reaching the client, thus increasing the product quality. Although 
the test engineers cannot give the number of defects that will be found, defect 
prediction models based on previous release data and experience, can be used. An 
estimated number of defects can help minimize the number of defects that appear 
after release, and can even give a good image of the software product quality, in 
the long run. 

The number of releases used is kept at a minimum and usually only one or 
two recent releases can be used for predicting. According to this model, there can 
be major changes in the development process along the releases and these can 
affect the relations between the defects. The lack of data is compensated using as 
many products as possible, but products that have been developed in an 
organization at the same time. 

3. Theoretical Review 

Software reliability has been defined as the probability of a software 
product to insure operating without failure in a specified environment, for a given 
amount of time. Based on this definition, software reliability prediction has been 
defined as a forecast of how reliable a software product will be in the future, 
based on data available so far. Software reliability tends to improve over testing 
and operating time, due to errors being removed. This is the reason for the models 
being named reliability growth models. Our goal is to analyze the early prediction 
model based on development phases. 

For software products, continuous availability is necessary, and reliability 
is an important component of this. Even so, there can be defects in software 
products that cause system failure. In order to avoid these situations and to 
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decrease support expenses, companies want to deliver to clients reliable software. 
Developing reliable software is one of the hardest problems of the IT industry. 
Pressure brought by schedule, resource limitations and unrealistic demands can 
negatively impact the reliability. A difficult issue is knowing the reliability of a 
delivered product. After reaching the clients, the reliability is indicated by the 
feedback coming from them, under the form of reports, complaints, or 
compliments. But, by this time, it is too late to change anything: that is why 
companies selling software want to know ahead of time the product reliability. 
Reliability models try to do this. 

The most important cause of defects in software is bugs, which mean 
incorrect implementations. Even the most talented programmers produce software 
with defects. The software products complexity is too big, at this moment, to be 
handled by people. With all the progress in programming techniques, such as 
splitting the programs in small modules, using evolved programming languages 
and complex developing tools, results are still far away from perfection, and the 
programming productivity has not increased significantly in the past two decades. 

The most unpredictable defects in software manifest only after a specific 
combination of values for input data or certain external events that were not 
predicted by the programmer. Such combinations appear with low probability 
during normal testing procedures, so they often make it to the operating phase. 
Also, new versions are built on older versions, fixing defects found and adding 
new functionality. Even so, the process of fixing defects often introduces new 
defects, because the effects of a fix have unpredictable consequences. 

Defect prediction deals with estimating the number of defects. Although 
other terms have been used to describe it, such as estimation, fault estimation, we 
should clarify the difference between the two notions. Defect estimation has been 
defined by Nayak [3] as a process of identifying different types of defects of a 
software product, aiming to reach high quality. However, defect prediction helps 
in estimating the quality of a product before it is released. 

Pham [1] has created a prediction model based on lifecycle phases, which 
divide the development cycle in different phases, such as: requirements review, 
design, implementation, unit testing, integration, system testing, functional testing 
etc. This model assumes that the found defects in different phases follow the 
Rayleigh function. It follows the defect statistics over early development stage, in 
order to predict the defect density in later stages. 

The Rayleigh model is the best suited model for estimating the number of 
defects logged throughout the testing process, depending on the stage when it was 
found (unit testing, integration testing, system testing, functional testing etc.). 
Defect prediction function is the following: 

),,()( ttKftF m=       (1) 
 
Parameter K is the cumulated defect density, t is the actual time unit and tm 

is the time at the peak of the curve. 
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Before representing the Rayleigh curve, the two parameters K and tm are 
estimated. At least three points are necessary for estimating this curve. Once these 
have been calculated, the graph can be represented for the entire time interval. 

The Rayleigh function is given by the following formula: 
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, where K represents total number of injected defects, Peak is a function of 
the time tmax where the curve reaches its peak and t is the time value at a specific 
moment. Parameter Peak is given by: 

.maxtPeak =      (3) 
 
The Rayleigh function given by (2) represents the defect arrival rate that is 

the number of defects to arrive at a specific time t. 
The Dalal and Ho model [4] is also known as the development life cycle 

predictive model. This model is based on a couple of assumption, such as: 
1. The defect rates from different products at the same life cycle phase are 

samples of a statistical universe from the same organization. 
2. Different releases of the same product are samples of a statistical 

universe of product releases. 
The first assumption reflects the fact that products developed inside the 

same organization are more or less homogenous. This model is based on the 
presumption that products from the same organization behave generally the same, 
and that releases of the same product behave similar defect rates. Defect density 
for a given product is related to variables, such as number of lines of code and 
number of errors in previous life cycles.  

4. Method Description 

Based on the Rayleigh function and the values of the early stages of 
testing, we can predict the evolution of the defects number for the second release 
of the product, following on to compare to the real-life obtained values. 

The application we used for this case study is an application on its second 
version, which means that the testing began from a stabile version of the product. 
We analyzed the evolution of the defect count across three consecutive releases, 
being tested over a period of 11, 28 and respectively 15 weeks. The application 
studied is an automation tool, developed in C#. 

The early prediction model proposed by Gaffney and Davis assumes that 
the faults detected over the life of the project will take the form of the Rayleigh 
curve (Fig. 1). The algorithm for prediction of defects must begin with obtaining 
the start date and the estimated duration of the project in months. Also, since this 
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is a phase-based model, it is important to know the estimated durations for all the 
phases, which can present itself as an issue at the beginning of the project. 

The data collected from the organization showed that the software process 
is a dynamic process, due to production cycles, client issues and support, resource 
management (hardware available, testers’ rearrangements). Starting from this 
observation and taking into consideration the evolution of the defect count over 
the release, we decided to use a model that collects defect data weekly. This 
model can follow more closely the evolution of the defect rate, doesn’t need time 
scheduling ahead of time, as the phase-based model does, and more easy to 
represent knowing the entire duration of the testing process. 

 
Fig. 1. Example of a Rayleigh curve 

We followed the steps suggested by Dhiauddin [5] for collecting the data 
and using it for prediction model are described as following: 

1. Gather defect data from past releases, using especially the total number 
of defects found. 

2. Use Linear Regression to estimate the total number of defects that may 
appear after release. 

3. Compute the number of latent defects. 
4. Calculate estimated defect rate using the Rayleigh function, for each 

week. 
5. Calculate the estimated defect rate by phase, based on the project 

schedule. 
6. Plot the Rayleigh function for the defect prediction pattern. 
7. Compare Rayleigh curve and actual data. 
A Rayleigh model uses six phases to predict the defect rate, in 

chronological order: high level design, low level design, coding, unit testing, 
integration testing, and system testing, according to Qian [6].  
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The algorithm used by us was the following: first, given the data points, 
we plotted them and determined tmax, the time at which the Rayleigh function is at 
a maximum. According to Laird [7], by the time tmax, almost 40% of the defects 
have been found which can help us calculate the total number of predicted defects. 
Mathematically, we can determine the curve to predict the defect rate as long as 
we hit the maximum value. 

The simulation method used for representing the proposed software 
reliability prediction model is created using MATLAB®. Starting from the known 
value of the parameter K, the time t, we could simulate and plot the function (2) 
over the period of time of the lifecycle. On the same plot, we have represented the 
real numerical values, which were introduced as arrays. For the second approach, 
in which an estimation of the K parameter was attempted, the method also uses 
MATLAB® program, as following: assuming the peak time and the peak value are 
two known numerical values, the parameter K could be computer, also using 
equation (2). The two approaches to the model, together with real data are plotted 
together.  

5. Results 

For the first release, at maximum time, the total number of defects is 149 
(Fig. 2), which gives us the predicted number of defects for the entire release 
372.5. Knowing K = 372.5 and the time to hit the maximum, we can determine 
f(t). We know that the time when the function reaches the maximum is at week 3, 
which is part of the first phase of the product lifecycle. Instead of using the 
classical phase model, we used tmax as the number of the week to reach the peak. 

Substituting the numerical values, we can determine that for the first 
release: 
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Another approach we followed was to try a better estimation of the K 

parameter, for this using the first set of available data. Having (2) and the number 
of defects obtained at the time when the peak is reached, we can calculate the 
value for K. For the same release – release 1 – the number of defects at t=3 is 69. 
Therefore, the value of the parameter is 341.285~K . 
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Fig. 2. Comparison of the predicted reliability models proposed and the real defect curve for the 
first release 

 

Fig. 3. Comparison of the predicted reliability models proposed and the real defect curve for the 
second release 

For the first release, the comparison between the prediction and the real 
life case is show in Fig. 2. As we can notice from the plot, estimating the value of 
K based on the defect rate from tm and using the time estimated in weeks, gives a 
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Rayleigh curve that is close to the real defect rate curve. Since the peak value was 
the starting point, the curves reach the value at the same time, but continue closely 
together after this point. While in the first two weeks, there is a slight difference 
between the real curve and the predicted one, after reaching the maximum value at 
a close point, the predicted curve follows closely the real data. This behavior 
could be due to the fact that the first weeks of the process life, the process and 
product timelines were not definite and the testing team was not at a full percent 
functionality.  

The same algorithm was used on the following two releases. Fig. 3 shows 
the curve predicted using the weekly defect rate model, the curve predicted by 
computing parameter K and the curve given by the real number of defects logged 
for the second release of the same application. Having the total number of defect 
at the peak time, this gives us K = 1385, and the Rayleigh function: 
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Using the number of defects at the peak time, we computed the parameter 
K, and obtained 1417.9~K . As noticed from Fig. 3, the Rayleigh prediction model 
fits the real data curve well for the entire duration of the project. The major fall in 
defect detection, close to the 21st week of testing, is the only difference noticeable 
in the comparison. This is due to process decisions, such as dropping a feature that 
raise issues, supplementing the number of developers assigned to difficult 
modules or features.  

For the third release, we followed the same logic in plotting the predicted 
defect arrival rate and the model curve using estimated K against the real defect 
arrival rate. We calculated K = 225 and so we have: 
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Also starting from the number of defects found at the peak moment of 
time, the parameter K was computed ( 593.539~K ) and the curve was represented 
in Fig. 4. We noticed that the three curves are fitted closely together, especially 
after the peak value is reached. There are small differences between the two ways 
to calculate the parameter K using the time to reach the Peak expressed in week 
number. As we can notice from the figure, the second release expanded over a 
long period of time, with feature being added over time, some features removed in 
time, and software versions being dropped for testing, which had an impact on the 
defect rate. This is best seen in the real behavior as the high variations between 
the number of defects found from week to week. 



Software reliability prediction model using Rayleigh function                         63 

 

Fig. 4. Comparison of the predicted reliability models proposed and the real defect curve for the 
third release 

Over the duration of a project the high points will tend to compensate for 
the low ones, so the behavior predicted by the Rayleigh model is a good 
approximation. Instead of using the classical approach of the phase-based 
Rayleigh model, we calculated all the variables of the model considering the 
number of the weeks for the entire release.  

6. Conclusions 

The most commonly used and useful defect prediction model is the model 
given by the Rayleigh function. The number of defects obtained per phase can 
vary from release to release, depending on the number of features implemented, 
their complexity, as well as other variables part of the product life cycle. Many of 
these variables can be hard to predict at the beginning of the testing process.  

This paper uses the existing phase-based model as a starting point in 
developing a new approach to predicting the defect rate of a software product. We 
have considered changing this model to better suit the testing process, and thus the 
defect rate was calculated weekly. The most important aspect of the model was to 
have a very good estimation of the total number of defects, represented in the 
function by the K parameter, and for this reason, we have developed two 
approaches used in computing it. The first approach starts from the observation 
that by tmax almost 40% of the defects have been reported, while the second 
approach uses the Rayleigh function at the tmax moment of time. Further on, the 
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model in the two different cases was validated using data sets of the software 
product, provided by a company that develops software applications. 

This comparison shows the real data often has some variation when 
compared to the original theoretical Rayleigh model. In some phases the data 
points will be higher or lower than the model would predict. It can also occur that 
real data will not follow an exact curve shape. This behavior has improved 
significantly using a model based on time evolution of a project, which doesn’t 
take into consideration the phases of the process.  

One aspect to notice is the importance of a correct time when the 
maximum rate is reached, in both cases we studied. Another suggested approach 
to compute K is to have its value estimated for the first three phases. 
Consequently, as perspectives, we are considering finding better algorithms to 
calculate the parameters of the Rayleigh function, in order to improve the 
prediction of defect rate, as well as eliminate as much as possible the empirical 
aspects of the reliability prediction models. Another aspect to follow in research is 
to find the causes for the differences between prediction and reality, and find an 
algorithm to obtain a better estimation. 

Our approach was to determine the number of defects reported weekly and 
estimate the total number of defects starting from this point. It is easier and more 
useful to predict the evolution of the defect rate starting from the previous weeks 
of defect reporting, as it follows the Rayleigh curve better. It can also help with 
the project scheduling, giving a better estimation of the number of weeks involved 
in testing. 
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